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Introduction

● TinyML: Bringing machine learning tasks to ultra-low-power edge devices

○ Resource efficiency

○ Power efficiency

○ Real-time processing

○ Hardware and software heterogeneity 
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Introduction

● Deep learning compilers for heterogeneous TinyML systems

○  TFLite, XLA, Glow and TVM

● TVM and its extensions: the best solution to support heterogeneous platforms [1]

○ Bring Your Own Codegen (BYOC) [2]

○ Universal Modular Accelerator (UMA) [3]

● MLonMCU: benchmarking tool, capable of virtual prototyping [4]

● Goal
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Integrating UMA and Virtual Prototyping to Explore  the Performance 
Improvement achieved by an accelerator for Quantized Neural Networks 
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UMA Interface 

● An easy-to-use structure to integrate new hardware accelerators into TVM

● Providing file structures, Python interface classes, and an API

● Enabling the straightforward offloading of specific operator patterns to on-chip 

accelerators

6



M.Sc. Samira Ahmadi (TUM) | CODAI’23

● QNN Dialect [5]
○ Extending TVM’s internal representation with a quantization context
○ A higher-level IR layered on top of the graph-level IR

Quantized Neural Network (QNN)
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● QVanilla Accelerator: a simple mock accelerator based on UMA’s Vanilla [7]

● Supported operators: quantized convolution + bias addition

● Offloading the supported operator patterns to QVanilla 

Study Case
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UMA Integration Process
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Generating the backend structure of the accelerator using UMA CLI

Defining the necessary patterns to annotate and partition the supported operators

Adding the pre/post-partitioning passes like memory layout conversion

Adding the required strategies for lowering the quantized operators

Adding the TIR passes to interface the generated code and the accelerator

Adding the code interface or driver of the accelerator



M.Sc. Samira Ahmadi (TUM) | CODAI’23

Content

● Introduction

● Background 

○ UMA Interface

○ QNN Dialect

● Approach

○ Integration Process

○ Support for QNN operators

● Virtual Prototyping

● Evaluation

● Conclusion

11



M.Sc. Samira Ahmadi (TUM) | CODAI’23

● MLonMCU is a benchmarking tool for the deployment of machine learning

○ TinyML frameworks: TFLM and TVM

○ ETISS target [6]

■ Simulating a 32 bit RISC-V microcontroller

Virtual Prototyping
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MLonMCU
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● ETISS Plugin Mechanism for integrating QVanilla as a memory-mapped peripheral

The Virtual Prototype of the Target
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● CPU instruction count → Simulated RISC-V microcontroller

● Simulation Time (Acc. operations are zero cycle) → measured on the x86 host

Design Exploration and Evaluation
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Model
CPU Instruction Count Simulation 

TimeCPU CPU + Acc. Saved

resnet 5.73e07 1.44e07 75% 0.68s

vww 4.12e07 1.46e07 65% 1.33s

aww 1.43e07 5.34e06 63% 0.54s
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● Considering time for Accelerator operators based on #MAC operations

Design Exploration and Evaluation
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CPU only, CPI=1

CPI > 1
14.3e06 cycles

CPU, CPI=1
Acc.: 0.5 cycle_per_mac

CPU, CPI=1
Acc.: 0 cycle_per_mac

7.5e06 cycles

5.3e06 cycles

2x
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● UMA provides interfaces to facilitate the process of integrating the HW accelerators

● Expanding Vanilla backend to enable the execution of quantized models

● Utilizing the MLonMCU tool to estimate the performance improvement of inference 

achieved by the accelerator

● Combination of virtual prototyping and TVM’s UMA for enabling the exploration and 

simulation of new hardware architectures

Conclusion
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