
Towards Rapid Exploration of
Heterogeneous TinyML Systems using

Virtual Platforms and TVM’s UMA
Samira Ahmadifarsani, Rafael Stahl, Philipp van Kempen, Daniel

Mueller-Gritschneder and Ulf Schlichtman

Chair of Electronic Design Automation, Technical University of Munich
Munich, Germany

21 September 2023

M.Sc. Samira Ahmadi (TUM) | CODAI’23

Content

● Introduction

● Background

○ UMA Interface

○ QNN Dialect

● Approach

○ Integration Process

○ Support for QNN operators

● Virtual Prototyping

● Evaluation

● Conclusion

2

M.Sc. Samira Ahmadi (TUM) | CODAI’23

Introduction

● TinyML: Bringing machine learning tasks to ultra-low-power edge devices

○ Resource efficiency

○ Power efficiency

○ Real-time processing

○ Hardware and software heterogeneity

3

Optimization
techniques Compression

(Quantization)

Hardware
Acceleration Benchmarking

Solutions

M.Sc. Samira Ahmadi (TUM) | CODAI’23

Introduction

● Deep learning compilers for heterogeneous TinyML systems

○ TFLite, XLA, Glow and TVM

● TVM and its extensions: the best solution to support heterogeneous platforms [1]

○ Bring Your Own Codegen (BYOC) [2]

○ Universal Modular Accelerator (UMA) [3]

● MLonMCU: benchmarking tool, capable of virtual prototyping [4]

● Goal

4

Integrating UMA and Virtual Prototyping to Explore the Performance
Improvement achieved by an accelerator for Quantized Neural Networks

M.Sc. Samira Ahmadi (TUM) | CODAI’23

Content

● Introduction

● Background

○ UMA Interface

○ QNN Dialect

● Approach

○ Integration Process

○ Support for QNN operators

● Virtual Prototyping

● Evaluation

● Conclusion

5

M.Sc. Samira Ahmadi (TUM) | CODAI’23

UMA Interface

● An easy-to-use structure to integrate new hardware accelerators into TVM

● Providing file structures, Python interface classes, and an API

● Enabling the straightforward offloading of specific operator patterns to on-chip

accelerators

6

M.Sc. Samira Ahmadi (TUM) | CODAI’23

● QNN Dialect [5]
○ Extending TVM’s internal representation with a quantization context
○ A higher-level IR layered on top of the graph-level IR

Quantized Neural Network (QNN)

7

M.Sc. Samira Ahmadi (TUM) | CODAI’23

Content

● Introduction

● Background

○ UMA Interface

○ QNN Dialect

● Approach

○ Integration Process

○ Support for QNN operators

● Virtual Prototyping

● Evaluation

● Conclusion

8

M.Sc. Samira Ahmadi (TUM) | CODAI’23

● QVanilla Accelerator: a simple mock accelerator based on UMA’s Vanilla [7]

● Supported operators: quantized convolution + bias addition

● Offloading the supported operator patterns to QVanilla

Study Case

9

M.Sc. Samira Ahmadi (TUM) | CODAI’23

UMA Integration Process

10

Generating the backend structure of the accelerator using UMA CLI

Defining the necessary patterns to annotate and partition the supported operators

Adding the pre/post-partitioning passes like memory layout conversion

Adding the required strategies for lowering the quantized operators

Adding the TIR passes to interface the generated code and the accelerator

Adding the code interface or driver of the accelerator

M.Sc. Samira Ahmadi (TUM) | CODAI’23

Content

● Introduction

● Background

○ UMA Interface

○ QNN Dialect

● Approach

○ Integration Process

○ Support for QNN operators

● Virtual Prototyping

● Evaluation

● Conclusion

11

M.Sc. Samira Ahmadi (TUM) | CODAI’23

● MLonMCU is a benchmarking tool for the deployment of machine learning

○ TinyML frameworks: TFLM and TVM

○ ETISS target [6]

■ Simulating a 32 bit RISC-V microcontroller

Virtual Prototyping

12

MLonMCU

M.Sc. Samira Ahmadi (TUM) | CODAI’23

● ETISS Plugin Mechanism for integrating QVanilla as a memory-mapped peripheral

The Virtual Prototype of the Target

13

M.Sc. Samira Ahmadi (TUM) | CODAI’23

Content

● Introduction

● Background

○ UMA Interface

○ QNN Dialect

● Approach

○ Integration Process

○ Support for QNN operators

● Virtual Prototyping

● Evaluation

● Conclusion

14

M.Sc. Samira Ahmadi (TUM) | CODAI’23

● CPU instruction count → Simulated RISC-V microcontroller

● Simulation Time (Acc. operations are zero cycle) → measured on the x86 host

Design Exploration and Evaluation

15

Model
CPU Instruction Count Simulation

TimeCPU CPU + Acc. Saved

resnet 5.73e07 1.44e07 75% 0.68s

vww 4.12e07 1.46e07 65% 1.33s

aww 1.43e07 5.34e06 63% 0.54s

M.Sc. Samira Ahmadi (TUM) | CODAI’23

● Considering time for Accelerator operators based on #MAC operations

Design Exploration and Evaluation

16

CPU only, CPI=1

CPI > 1
14.3e06 cycles

CPU, CPI=1
Acc.: 0.5 cycle_per_mac

CPU, CPI=1
Acc.: 0 cycle_per_mac

7.5e06 cycles

5.3e06 cycles

2x

M.Sc. Samira Ahmadi (TUM) | CODAI’23

● UMA provides interfaces to facilitate the process of integrating the HW accelerators

● Expanding Vanilla backend to enable the execution of quantized models

● Utilizing the MLonMCU tool to estimate the performance improvement of inference

achieved by the accelerator

● Combination of virtual prototyping and TVM’s UMA for enabling the exploration and

simulation of new hardware architectures

Conclusion

17

M.Sc. Samira Ahmadi (TUM) | CODAI’23

[1] Max Sponner, Bernd Waschneck, and Akash Kumar. 2021. Compiler toolchains for deep learning workloads on
embedded platforms. arXiv preprint arXiv:2104.04576 (2021)

[2] Zhi Chen, Cody Hao Yu, Trevor Morris, Jorn Tuyls, Yi-Hsiang Lai, Jared Roesch, Elliott Delaye, Vin Sharma, and
Yida Wang. 2021. Bring your own codegen to deep learning compiler. arXiv preprint arXiv:2105.03215 (2021).

[3] M. J. Klaiber, P. P. Bernardo, and C. Gerum. 2022. UMA: Universal Modular Accelerator Interface.
https://github.com/apache/tvm-rfcs/blob/ main/rfcs/0060_UMA_Unified_Modular_Accelerator_Interface.md

[4] Philipp van Kempen, Rafael Stahl, Daniel Mueller-Gritschneder, and Ulf Schlichtmann. 2023. MLonMCU:
TinyML Benchmarking with Fast Retargeting. arXiv preprint arXiv:2306.08951 (2023)

[5] Animesh Jain, Shoubhik Bhattacharya, Masahiro Masuda, Vin Sharma, and Yida Wang. 2020. Efficient
execution of quantized deep learning models: A compiler approach. arXiv preprint arXiv:2006.10226 (2020).

[6] Daniel Mueller-Gritschneder, Keerthikumara Devarajegowda, Martin Dittrich, Wolfgang Ecker, Marc Greim, and
Ulf Schlichtmann. 2017. The extendable translating instruction set simulator (ETISS) interlinked with an MDA
framework for fast RISC prototyping. In Proceedings of the 28th International Symposium on Rapid System
Prototyping: Shortening the Path from Specification to Prototype. 79–84.

[7] M. J. Klaiber, P. P. Bernardo, and C. Gerum. 2022. Making your Hardware Accelerator TVM-ready with UMA.
https: //tvm.apache.org/docs/tutorial/uma.html

References

18

