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‒ Estimates the number of occupants in a given area

‒ all-in-one solution
‒ “smart” sensor
‒ Intelligent solution
‒ Only outputs estimated number

‒ No…
‒ Cloud infrastructure
‒ Edge server
‒ Network connection
‒ Need for any additional compute

Radar-based People Counting
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‒ Data stays on the smart sensor
‒ Not send to any (third) partyPrivacy

‒ Can be deployed everywhere
‒ Easy to integrate into existing productsFlexibility

‒ No reliance on cloud
‒ No additional compute required
‒ No upkeep cost after sale
‒ No end-of-life due to API changes

Independence

‒ Enables “virtual” always-on devices
‒ Powering down the main device
‒ Only smart sensor stays on

Power Efficient

Benefits of local Processing
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‒ Deployment has become easier
‒ Modern toolchains automate most steps
‒ Just need to find appropriate network architecture

‒  The solution works, but…
‒ Rather slow
‒ High power consumption

‒ Can we improve this further?
‒ Further optimizations reduce accuracy too much

Problem: Performance
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‒ Traditional Deep Learning: static
‒ Neural Networks: no complex control flow

‒ Easy to optimize/pre-plan execution
‒ Limits its capabilities; every sample is treated the same

‒ Optimizations: permanently impair prediction capabilities
‒ Applied ahead-of-time
‒ i.e. pruning, quantization, …

‒ Observation:
‒ Not all samples are equal
‒ “easy” and “hard” samples exist

‒ Adaptive Neural Networks:
‒ Change structure and parameters at runtime
‒ Depending on current circumstances (input, resources, …)

Adaptive Neural Networks
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‒ Can terminate inference early
‒ Introduce Early Exits:

‒ Additional classifiers
‒ Between hidden layers
‒ Trained for the same task as the final classifier

‒ Inference can be terminated if early result is sufficient

‒ Idea: Spend only as many resources as necessary
‒ “Simple” data terminates early
‒ “Hard” samples classified correctly by full network

‒ Can be seen as dynamic layer pruning

Early Exit Neural Networks
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‒ Problem: how to decide when it is “sufficient”?
‒ Small footprint, fast computation
‒ Good decisions

‒ State-of-the-art
‒ Rule-based:

‒ Budget
‒ Confidence
‒ Patience

‒ Agent-based:
‒ Additional model
‒ Trained to select classifier
‒ Not suitable for embedded

Early Exit Neural Networks
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‒ Radar sensor data is temporally correlated

‒ Subsequent samples are often similar
‒ Time frame depends on the application
‒ Conference room: hours/days without occupants

‒ Unnecessary to perform the entire inference again
‒ Just need to detect if it is similar

‒ No reliable similarity metrics for radar data
‒ Not expressive enough
‒ Too expensive to run on every sample

‒ Idea: Monitor early results instead
‒ Change in output should correlate to change in input
‒ Utilizes extracted features that are relevant for task

Observations



12for CODAI'23 Workshop Copyright © Infineon Technologies AG 2023. All rights reserved.23 Mrz 2023

Application1 3

Adaptive Neural Networks2 7

Temporal Patience3 12

Conclusion4 17

Table of contents



13for CODAI'23 Workshop Copyright © Infineon Technologies AG 2023. All rights reserved.23 Mrz 2023

‒ Observe change in first Early Exit
‒ Calculate distance, compare to threshold

‒ If below threshold: terminate, reuse previous result
‒ Otherwise: continue inference

‒ What to use as the reference:
‒ Direct predecessor
‒ would lead to accumulating small changes
‒ “Scene Detection” instead

‒ “Scene”
‒ Group of subsequent similar inputs
‒ Always use the first sample as a reference
‒ Only label the first sample by full inference

‒ New Scene:
‒ Started by a sample that is different from previous

Difference Detection

Scene Reference Sample

Subsequent Sample

Change Threshold Radius
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‒ Select used classifier dynamically
‒ Higher computational cost
‒ But increased accuracy

‒ Idea: use classifier that can detect relevant features

‒ New Scene Detection:
‒ Not only reliant on distance
‒ Also considers output label
‒ Increases accuracy in ambiguous situations

Temporal Patience

Scene Reference Sample

Subsequent Sample

Change Threshold Radius
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‒ Evaluated the performance on radar recordings
‒ Duration: 30 seconds – 2 Minutes

Benchmark
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‒ Evaluated the performance on radar recordings
‒ Duration: 30 seconds – 2 Minutes

Benchmark

Difference Detection Temporal Patience
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‒ 26% less mean operations per inference

‒ Very early results
‒ On a single application
‒ Short recordings, even shorter Scenes
‒ Applications with more static content could increase savings

‒ Temporal Component:
‒ RNN: leverage for prediction quality
‒ Temporal Patience: leverage for better efficiency

‒ Future research on utilizing it for increased efficiency

Conclusion
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‒ Different Data Modalities
‒ Not only radar data is temporally correlated
‒ IoT also utilizes various sensors

‒ Microphones
‒ Cameras
‒ Specialized sensors

‒ Democratize Adaptive Deep Learning
‒ Niche topic, not well known
‒ Requires expertise
‒ Enable automatic deployment

‒ Search for a suitable Adaptive solution
‒ Network adaptation method
‒ At-runtime decision mechanism
‒ Retraining of rewritten adaptive model

Future Work



20

The project on which this report is based was funded by the German Ministry of 
Education and Research (BMBF) under the project number 16ME0542K. The 

responsibility for the content of this publication lies with the author.



21for CODAI'23 Workshop Copyright © Infineon Technologies AG 2023. All rights reserved.23 Mrz 2023

Applications for Radar Sensors in IoT

Presence Detection

People Counting / Tracking

Security Systems

Gesture Recognition

Health Monitoring
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Smart Home / Building
‒ Control building based on 

utilization

“Virtual” Always-On 
Devices
‒ Automatic wake-up
‒ Only active when users are 

present

Security Systems
‒ Alarm system
‒ Personal device privacy 

detection

Applications for People Counting
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‒ Task: Estimate the number of people
‒ In a given area
‒ Using radar sensor data

‒ Solution:
‒ 60 GHz Radar Sensor
‒ Cortex-M Microcontroller
‒ Neural Network

‒ Use case:
‒ Home Automation
‒ Always-on Devices
‒ Security Features

‒ Problem:
‒ Fitting the Workload onto the MCU
‒ Preprocessing + Inference + Postprocessing
‒ Minimize latency and power consumption

Application: Radar-based People Counting
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‒ Low Power Consumption
‒ Small SizeSmall footprint

‒ Does not need Lighting Source
‒ Robust against Weather Conditions
‒ Not harmful for Pets

Environment 
independent

‒ No Biometric Features
‒ Not Recognition of Person

Privacy 
Preserving

‒ High Resolution
‒ Medium Range
‒ Reconfigurable

High Quality 
Data

Why Radar Sensors?
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Radar Data Collection
‒ Sensor sends sweep
‒ Records Response as raw data

Preprocessing
‒ Raw data is converted
‒ Into representation that is easier to 

interpret

Interpretation / Analysis
‒ Using Deep Learning
‒ Achieves best quality

Postprocessing
‒ Interpret result
‒ React based on it

Processing Steps
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‒ Radar data must be analyzed to perform the task
‒ Preprocessing + Deep Learning Inference
‒ Deep Learning enables the best accuracy

‒ Processing should stay local
‒ Maintain independence
‒ Maximal flexibility
‒ Not all use cases can rely on the presence of more compute resources

‒ But: “local” = Cortex-M class of devices
‒ Needs to perform preprocessing + inference
‒ Processing latency needs to be short
‒ Power consumption should be as low as possible
‒ MCU is limited in compute power

Problem: Processing the Data (locally)
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Preprocessing
• Input: raw sensor data
• Output: Range-Doppler maps
• Handcrafted algorithms

Model Inference
• Input: Range-Doppler Maps
• Output: Prediction
• Convolutional Network

Postprocessing
• Interpret prediction result
• React based on it
• Handcrafted Logic

Data Processing
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Data Processing
‒ Preprocessing
‒ Deep Learning Inference
‒ Postprocessing

‒ Deep Learning achieves best 
quality results

Local Execution
‒ Maximal flexibility
‒ Maintain independence
‒ No reliance on additional 

compute resources

‒ Allows for coverage of all use 
cases

Constraints & Requirements
‒ Users demand short latency
‒ Low power consumption
‒ Accurate results

‒ MCU:
‒ Limited compute power
‒ Not always a network connection

‒ One package: Sensor + MCU + Data Processing
‒ MCU

‒ Cortex-M class device
‒ Perform the entire data processing pipeline

Problem: Processing the Data (locally)


