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Abstract

Deploying AI workload to hardware is a complex and challenging task, 
especially for specialized hardware systems that inherently support and 
exploit compression techniques. At a certain level of compression, 
optimizations at compiler level are not sufficient anymore to maintain task 
accuracy. To recover this task accuracy without sacrificing power efficiency, AI 
algorithms and hardware have to be co-designed. In this talk, I will present a 
holistic view on compression techniques for deep neural networks and their 
application in the context of specialized deep learning accelerators.
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Outline

- Hardware-algorithm co-design

- QAT vs PTQ

- Second-Order Structured Pruning

- Conclusion
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Hardware-algorithm co-design
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Compression techniques

- Quantization

- Weight sharing

- Knowledge distillation

- Pruning

- Neural architecture search
- Low-rank decomposition

Source: [1]
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Hardware-algorithm co-design

- Accuracy and frames per second are 
of high interest for applications.

- Usually uncompressed networks are 
optimized for GPU execution and 
non-Pareto-optimal network 
architectures are discarded.

- Depending on the configuration of 
compression different trade-offs 
between FPS and accuracy are 
achieved.

- Non-Pareto-optimal uncompressed 
networks can be Pareto-optimal 
compressed networks.
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QAT vs PTQ
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Progressive knowledge distillation [3]:Progressive quantization [2]:
32-bit→8-bit→4-bit→2-bit

Progressive Compression
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Progressive PTQ-KD

Methods:
- Baseline:

Compress and fine-tune full network in a 
single stage.

- Stage-by-stage approach:
Compress and fine-tune the network 
layer by layer.

Results:
- The drops in accuracy between stages is 

smaller for the stage-by-stage approach.
- Although the training time is shorter, a 

higher accuracy is achieved.
- To further decrease the runtime at the 

use of more compute resources stages 
can be optimized in parallel.
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Second-Order Structured Pruning
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SOSP

Second-Order Structured Pruning

Motivation:
- One-shot method
- using second-order correlations between 

structures
- allows for global optimization
- of structured pruning
- qualifying as efficient NAS method.

In contrast to:
- Iterative methods
- required because correlations are not considered
- only allow for local optimizations
- of oftentimes unstructured pruning
- not transferring to real-world applications.

Full, block-wise, and diagonal Hessian
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Second-Order Structured Pruning - Methods

- Objective: “Select the pruning mask 
M to minimize the joint effect on the 
network loss.”

- The saliency of structures is 
computed by a Taylor expansion in 
which the second derivative captures 
correlation between structures.

- To reduce computational costs the 
Hessian-vector product is used to 
approximate the Hessian resulting in 
a complexity like for first-order 
methods.
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SOSP applied to ResNet-50 on ImageNet

- Better trade-off between accuracy 
and number of parameters with less 
complex algorithm than comparable 
approaches.

- Works especially well for high pruning 
rates.
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How SOSP can be used to find better neural 
architectures
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Conclusion

- Closing the loop for hardware-algorithm co-design allows for rapid 
development of end-to-end optimized solutions.

- Under the assumption of limited access to data and the training 
pipeline, a wide spectrum of PTQ methods is available to compress 
neural networks. Methods on the Pareto-front of accuracy and FPS are of 
high interest.

- Effective methods exist for global pruning that qualify as a replacement 
or extension of neural architecture search methods. 
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