
Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

1

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

HUAWEI TECHNOLOGIES SWITZERLAND AG

John Doe

— Huawei Confidential —

ART: An Actor transition systems RunTime

for enabling efficient partitioning of neural

network graphs

Endri BEZATI

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

2

Overview

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

3

Actor transition systems (ATS) an extension to dataflow with firing

actions
actions

actions

state

actors

guarded atomic actions

encapsulated state

point-to-point, buffered
token passing connections

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

4

CAL as a notation for actors / Dataflow with Firing

actor Add () A, B ==> Out:

action [a], [b] ==> [a + b]

end

end

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

5

Actor Transition Systems - extensions to dataflow with firing

actor Add () A, B ==> Out:

action [a], [b] ==> [a + b]

end

end

actor Sum () A ==> X:

s := 0;

action [a] ==> [s]

do

s := s + a;

end

end

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

6

Actor Transition Systems - extensions to dataflow with firing

actor Sum () A ==> X:

s := 0;

action [a] ==> [s]

do

s := s + a;

end

end

actor Route () A ==> X, Y:

action [a] ==> X: [a]

guard P(a)

end

action [a] ==> Y: [a]

guard not P(a)

end

end

actor Add () A, B ==> Out:

action [a], [b] ==> [a + b]

end

end

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

7

Actor Transition Systems - extensions to dataflow with firing

actor Sum () A ==> X:

s := 0;

action [a] ==> [s]

do

s := s + a;

end

end

actor Route () A ==> X, Y:

action [a] ==> X: [a]

guard P(a)

end

action [a] ==> Y: [a]

guard not P(a)

end

end

actor Route () A ==> X, Y:

A: action [a] ==> X: [a]

guard P(a)

end

B: action [a] ==> Y: [a]

end

priority

A > B;

end

end

actor Add () A, B ==> Out:

action [a], [b] ==> [a + b]

end

end

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

8

Actor execution model

action
selection

action
execution

(firing)

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

9

Action Selection based on the Actor Machine

actor Multiplication () A, B ==> Out:

Mul: action [a], [b] ==> [a + b]

end

end

cA : Available token on port A
cB : Available token on port B
cC : Available space on port Out

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

10

Action Selection based on the Actor Machine

actor Multiplication () A, B ==> Out:

Mul: action [a], [b] ==> [a + b]

end

end

cA : Available token on port A
cB : Available token on port B
cC : Available space on port Out

Actor state

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

11

Action Selection based on the Actor Machine

actor Multiplication () A, B ==> Out:

Mul: action [a], [b] ==> [a + b]

end

end

cA : Available token on port A
cB : Available token on port B
cC : Available space on port Out

Actor state
Remember what conditions

Have been checked

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

12

Action Selection based on the Actor Machine

actor Multiplication () A, B ==> Out:

Mul: action [a], [b] ==> [a + b]

end

end

cA : Available token on port A
cB : Available token on port B
cC : Available space on port Out

Actor state
Remember what conditions

Have been checked

Execute the body
of the action

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

13

Action Selection based on the Actor Machine

Remember what conditions
Have been checked

actor Multiplication () A, B ==> Out:

Mul: action [a], [b] ==> [a + b]

end

end

cA : Available token on port A
cB : Available token on port B
cC : Available space on port Out

Execute the body
of the action

Actor state

Restart selection

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

14

https://github.com/streamblocks

• ATS Model of Computation

• CAL as programming language

• Actor Machine for Action Selection

• ART Runtime

• Code generation

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

15

Actor transition systems RunTime

For an actor to fire (execute):
1. The actor is mapped into a PE
2. The actor is selected for execution from a set of

actors that are mapped on the PE
3. The actor firing conditions are checked
4. Iff the firing conditions are fulfilled the actor fires,

otherwise chose another actor

End of execution:
1. All PEs sleep
2. Try once again to execute actors on PEs, if none has

fire then terminate

Deadlock detection:
1. Some PEs sleep because of no input data
2. An actor can fire but can not write to its output

port

Bulk Synchronous Parallel execution between PEs

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

16

Graph partitioning

⚫ Partitioning tools

▪ Metis : multilevel recursive-bisection, multilevel k-way, and multi-constraint partitioning

▪ PatoH : multilevel hypergraph partitioning

⚫ Based on profiling information

▪ Actor weight(s)

• Abstract weights : CAL statements or MAC operations

• Platform profiling : using hardware counters

• (Optional) Memory used by actor

▪ Connection weight

• Data type

• Number of tokens traversed given an input stimulus

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

17

Placing actors to processing elements

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>

<network id="nn.TopInference"/>
<partitioning>

<partition id="0" >
<instance id="i_load_arg2_1"/>
<instance id="i_print_addmm_2"/>
<instance id="i_convolution"/>
<instance id="i_relu_"/>
. . .

</partition>
<partition id="1“ >

<instance id="i_convolution_4"/>
<instance id="i_relu__4"/>
<instance id="i_max_pool2d_with_indices_2"/>
<instance id="i__adaptive_avg_pool2d"/>
. . .

</partition>
</partitioning>
<connections>

<connection source="i_load_arg2_1" source-port="OUT" target="i_convolution" target-port="arg2_1" size="16"/>
<connection source="i_addmm_2" source-port="addmm_2" target="i_print_addmm_2" target-port="IN" size="16"/>
<connection source="i_convolution" source-port="convolution" target="i_relu_" target-port="convolution" size="16"/>
<connection source="i_relu_" source-port="relu_" target="i_max_pool2d_with_indices" target-port="relu_" size="16"/>
<connection source="i_max_pool2d_with_indices" source-port="max_pool2d_with_indices_0" target="i_convolution_1" target-port="getitem" size="16"/>
. . .

</connections>
</configuration>

Instances in first partition, pinned to core 0

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

18

Placing actors to processing elements

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>

<network id="nn.TopInference"/>
<partitioning>

<partition id="0" >
<instance id="i_load_arg2_1"/>
<instance id="i_print_addmm_2"/>
<instance id="i_convolution"/>
<instance id="i_relu_"/>
. . .

</partition>
<partition id="1“ >

<instance id="i_convolution_4"/>
<instance id="i_relu__4"/>
<instance id="i_max_pool2d_with_indices_2"/>
<instance id="i__adaptive_avg_pool2d"/>
. . .

</partition>
</partitioning>
<connections>

<connection source="i_load_arg2_1" source-port="OUT" target="i_convolution" target-port="arg2_1" size="16"/>
<connection source="i_addmm_2" source-port="addmm_2" target="i_print_addmm_2" target-port="IN" size="16"/>
<connection source="i_convolution" source-port="convolution" target="i_relu_" target-port="convolution" size="16"/>
<connection source="i_relu_" source-port="relu_" target="i_max_pool2d_with_indices" target-port="relu_" size="16"/>
<connection source="i_max_pool2d_with_indices" source-port="max_pool2d_with_indices_0" target="i_convolution_1" target-port="getitem" size="16"/>
. . .

</connections>
</configuration>

Instances in first partition, pinned to core 0

Instances in second partition, pinned to core 1

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

19

Placing actors to processing elements

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<configuration>

<network id="nn.TopInference"/>
<partitioning>

<partition id="0" >
<instance id="i_load_arg2_1"/>
<instance id="i_print_addmm_2"/>
<instance id="i_convolution"/>
<instance id="i_relu_"/>
. . .

</partition>
<partition id="1“ >

<instance id="i_convolution_4"/>
<instance id="i_relu__4"/>
<instance id="i_max_pool2d_with_indices_2"/>
<instance id="i__adaptive_avg_pool2d"/>
. . .

</partition>
</partitioning>
<connections>

<connection source="i_load_arg2_1" source-port="OUT" target="i_convolution" target-port="arg2_1" size="16"/>
<connection source="i_addmm_2" source-port="addmm_2" target="i_print_addmm_2" target-port="IN" size="16"/>
<connection source="i_convolution" source-port="convolution" target="i_relu_" target-port="convolution" size="16"/>
<connection source="i_relu_" source-port="relu_" target="i_max_pool2d_with_indices" target-port="relu_" size="16"/>
<connection source="i_max_pool2d_with_indices" source-port="max_pool2d_with_indices_0" target="i_convolution_1" target-port="getitem" size="16"/>
. . .

</connections>
</configuration>

Instances in first partition, pinned to core 0

Instances in second partition, pinned to core 1

Configurable buffer size

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

20

Compilation infrastructure

CAL

XCF

StreamBlocks

Complier

AM

Network Scripts

C++

ART

Code

Generation

Compilation

Exe

Partitioning

Profiling

XCF

Initial
Partitioning & buffer

configuration

ART libTorch

Metis, PatoH. dagP,…

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

21

From PyTorch to CAL

FuncTorch
DAG

Extraction

Wrapped

Operators

To Actors

External

ATen

Functions

NN Application and

transformation NN Graph Extraction Dataflow program

Top Inference

Actor

Forward

DAG

PyTorch

Inference

Model
CAL

Actor

Forward

DAG

Actor

Forward

DAG

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

22

Torch FX Graph Operators to CAL actors (1)

• Torch FX nodes kind considered
• placeholder : input arguments
• call_function : ATen or python functions
• output : return value(s), in general an array or tuple

• call_function Node
• Only nodes with ‘schema’ attributed considered

• Nodes without a ‘schema’ are python built-in operators like (getitem of a tuple)
• Arguments: Tensors, arrays, literals (boolean, integer and float) and None

• Operation name given by node.target._schema.name

• placeholder
• Input arguments: parameters, buffers, input data and expected output for training

• Parameters, and buffers are treated as constant state variables

• output
• Return values: tensor or a tuple of tensors

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

23

Torch FX Graph Operators to CAL actors (2)

From ATen operator to CAL external function

• Find the unique operators used in the Torch FX graph
• Create a unique external CAL function per ATen operator

• For every argument find its type and convert it to a CAL type
• The argument names are not stored on the Torch FX, naming them with ‘arg_<number>’

call_function | convolution | aten.convolution.default |(arg2_1, arg0_1, arg0_2, [4,4], [2,2], [1,1], False, [0,0], 1)

external function convolution(Tensor arg_0,

Tensor arg_1,

Tensor arg_2,

List(type:int(size=64)) arg_3,

List(type:int(size=64)) arg_4,

List(type:int(size=64)) arg_5,

bool arg_6,

List(type:int(size=64)) arg_7,

int(size=64) arg_8)

--> Tensor

end

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

24

Torch FX Graph Operators to CAL actors (3)

From ATen operator to CAL Actors

• Not all arguments are considered as actor inputs
• All parameters and buffers are constant state variables, loaded on actor construction
• Single action actor, the action calls the external ATen function with the arguments of the

call_function
• Output of the actor has the same name as the ‘call_function’ node’s name

call_function | convolution | aten.convolution.default |(arg2_1, arg0_1, arg0_2, [4,4], [2,2], [1,1], False, [0,0], 1)

actor convolution() Tensor arg2_1 ==> Tensor convolution :

Tensor _arg0_1 = load_tensor_from_file("output/params_buffers_data/arg0_1.pt");

Tensor _arg0_2 = load_tensor_from_file("output/params_buffers_data/arg0_2.pt");

action [_arg2_1] ==> [_convolution]

var

Tensor _convolution = convolution(_arg2_1, _arg0_1, _arg0_2, [4, 4], [2, 2], [1, 1], false, [0, 0], 1)

end

end

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

25

Expressing data-parallelism by splitting the batch size

Split
Cat

Input

Tensor
Input

Tensor
Input

Tensor

…

Forward

…

Forward

…

Forward

…

Forward

Input

Tensor
Input

Tensor
Output

Tensor
(4,3,224,224)

(1,3,224,224)

(1,3,224,224)

(1,3,224,224)

(1,3,224,224)

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

26

Experimental results

• Test Platform
• HiSilicon Kunpeng 920, ARM v8.2
• 4 Sockets, 48-cores per socket

• PyTorch 2.0
• Compiled natively on the platform
• OpenBLAS as BLAS

• 8 Configurations
• ResNet-50 from TorchVision
• (B, 3, 224, 224) shape
• Data parallelism from 1 to 4
• Test implicit pipeline parallelism and

data parallelism
• Force OpenBLAS to use only one core
• DP-1 has similar performance as vanilla

PyTorch for a single request

Vanilla PyTorch

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

27

Conclusion

⚫ Initial exploration of an actor runtime for executing ML Graphs

⚫ ATS + Actor Machine + ART + PyTorch

⚫ Firing conditions checking latency <<< operation execution latency

⚫ Performance depends on a good partitioning tool/algorithm

⚫ Use libTorch Ops with stream-based actor semantics

⚫ Inter-op parallelism and implicit pipeline parallelism

⚫ Future work

▪ Distributed execution

▪ ML Training

▪ Python bindings for representing stream-based actors

▪ ART as a PyTorch backend

Computing Systems Laboratory | HUAWEI | ZURICH RESEARCH CENTER

28

Copyright © 2023 Huawei Technologies Switzerland AG. All Rights Reserved.

The information in this document may contain predictive statements including, without limitation, statements regarding the future financial and operating results, future product portfolio, new

technology, etc. There are a number of factors that could cause actual results and developments to differ materially from those expressed or implied in the predictive statements. Therefore, such

information is provided for reference purpose only and constitutes neither an offer nor an acceptance. Huawei may change the information at any time without notice.

ZURICH RESEARCH CENTER

